Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Perhydrobenzimidazole-2-thione

YingChun Liu* and XiaoYu Li

Department of Biomedicine, Zhongshan Torch Polytechnic, Zhongshan 528436, Guangdong Province, People's Republic of China
Correspondence e-mail: chemliuyingchun@126.com
Received 8 December 2008; accepted 24 December 2008
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma()=0.000 \AA$; disorder in main residue; R factor $=0.047 ; w R$ factor $=0.154 ;$ data-to-parameter ratio $=10.3$.

The studied crystal of the title compound, $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}$, is a racemic mixture of two isomers, viz. S, S and R, R. The two isomers share the same position on a mirror plane in the space group $P 2_{1} / m$; thus all atoms except one are disordered between two positions in a 1:1 ratio. Intermolecular $\mathrm{N}-$ H..S hydrogen bonds link the molecules into chains propagating in the [010] direction.

Related literature

For details of the synthesis, see: Allen et al. (1946). For useful applications of thiourea derivetives, see: Schroeder (2006); Amos et al. (2007).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}$

$$
M_{r}=156.25
$$

Monoclinic, $P 2_{1} / m$
$a=5.7459$ (16) \AA
$Z=2$
$b=8.543$ (2) \AA
Mo $K \alpha$ radiation
$c=8.816(2) \AA$
$\mu=0.31 \mathrm{~mm}^{-1}$
$\beta=98.208(4)^{\circ}$ 。
$T=293$ (2) K
$V=428.3(2) \AA^{3}$
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.931, T_{\text {max }}=0.970$

4541 measured reflections 934 independent reflections 740 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047 \quad 6$ restraints
$w R\left(F^{2}\right)=0.154 \quad$ H-atom parameters constrained
$S=1.03$
934 reflections
91 parameters
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{~S} 1 A^{\mathrm{i}}$	0.86	2.53	$3.367(11)$	166
$\mathrm{~N} 1 B-\mathrm{H} 1 B \cdots \mathrm{~S} 1 B^{\mathrm{ii}}$	0.86	2.76	$3.483(11)$	142

Symmetry codes: (i) $-x+2, y-\frac{1}{2},-z+2$; (ii) $-x+2,-y+1,-z+2$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful to Zhongshan Torch Polytechnic for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2499).

References

Allen, C. F. H., Edens, C. O. \& VanAllan, J. (1946). Org. Synth. 26, 34-35.
Amos, F. F., Morin, S. A., Streifer, J. A., Hamers, R. J. \& Jin, S. (2007). J. Am. Chem. Soc. 129, 14296-14302.
Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Schroeder, D. C. (1995). Chem. Rev. 55, 181-228.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o248 [doi:10.1107/S1600536808043894]

Perhydrobenzimidazole-2-thione

Y. C. Liu and X. Y. Li

Comment

Thiourea and its derivatives are used in dyes, photographic film, elastomers, plastics, textiles, insecticides, preservatives, rodenticides and pharmaceuticals (Schroeder et al., 2006; Amos et al., 2007)

The title molecule consists of one thioimidazole five-membered ring and one six-membered ring which display chair conformation. The studied crystal is a racemic mixture of two isomers - (S, S) and (R, R), respectively - which share the same position on a mirror plane in space group $\mathrm{P} 2_{1} / \mathrm{m}$, thus all atoms except one are disordered between two positions in a ratio $1: 1$. In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (Table 1) link the molecules into chains propagating in direction [010].

Experimental

The title compound was prepared according to the reported method (Allen et al.,1946). Crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH solution in a ratio of $4: 1$ at 293 K .

Refinement

All H atoms were geometrically positioned $(\mathrm{C}-\mathrm{H} 0.97-0.98 \AA, \mathrm{~N}-\mathrm{H} 0.86 \AA)$ and refined as riding, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}$, $\mathrm{N})$. The crystal structure was refined in two space groups $-\mathrm{P} 2_{1}$ and $\mathrm{P} 2_{1} / \mathrm{m}$, respectively. In both groups the severe disorder has been observed with almost identical values of final R -factors, so the preference has been made for $\mathrm{P} 2_{1} / \mathrm{m}$.

Figures

Fig. 1. View (S,S)-isomer of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Perhydrobenzimidazole-2-thione

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}$
$F_{000}=168$
$M_{r}=156.25$
Monoclinic, $P 2{ }_{1} / m$
Hall symbol: -P 2yb
$D_{\mathrm{x}}=1.211 \mathrm{Mg} \mathrm{m}^{-3}$
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 1728 reflections

supplementary materials

$a=5.7459(16) \AA$
$b=8.543(2) \AA$
$c=8.816(2) \AA$
$\beta=98.208(4)^{\circ}$
$V=428.3(2) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& \theta=2.3-24.6^{\circ} \\
& \mu=0.31 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.20 \times 0.10 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.931, T_{\text {max }}=0.970$
4541 measured reflections

934 independent reflections
740 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=26.5^{\circ}$
$\theta_{\text {min }}=2.3^{\circ}$
$h=-7 \rightarrow 7$
$k=-9 \rightarrow 10$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.154$
$S=1.03$
934 reflections
91 parameters
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring
sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1091 P)^{2}+0.0156 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.009$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3}$
Extinction correction: none
6 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{2} / U_{\text {eq }}$	Occ. (<1)
C2	$0.8296(4)$	0.2500	$0.9716(3)$	$0.0734(7)$	
S1A	$1.0495(14)$	0.2500	$1.1194(10)$	$0.0811(15)$	0.50
N1A	$0.746(3)$	$0.1176(10)$	$0.9007(16)$	$0.095(4)$	0.50
H1A	0.8101	0.0266	0.9121	0.113^{*}	0.50
C3A	$0.534(2)$	$0.1541(15)$	$0.8039(15)$	$0.102(4)$	0.50
H3A	0.4166	0.1316	0.8715	0.122^{*}	0.50
C4A	$0.4237(9)$	$0.0818(6)$	$0.6596(6)$	$0.0974(14)$	0.50
H4A1	0.3843	-0.0258	0.6803	0.117^{*}	0.50
H4A2	0.5382	0.0796	0.5887	0.117^{*}	0.50
C5A	$0.2070(17)$	$0.1621(11)$	$0.5834(11)$	$0.119(6)$	0.50
H5A1	0.0758	0.1270	0.6327	0.143^{*}	0.50
H5A2	0.1779	0.1270	0.4777	0.143^{*}	0.50
S1B	$1.0773(15)$	0.2500	$1.0974(10)$	$0.088(2)$	0.50
N1B	$0.697(2)$	$0.3722(7)$	$0.9103(13)$	$0.0720(19)$	0.50
H1B	0.7108	0.4663	0.9453	0.086^{*}	0.50
C3B	$0.5339(13)$	$0.3261(13)$	$0.7810(14)$	$0.0718(18)$	0.50
H3B	0.6275	0.3463	0.6985	0.086^{*}	0.50
C4B	$0.3201(9)$	$0.4183(6)$	$0.7250(7)$	$0.0994(15)$	0.50
H4B1	0.3630	0.5236	0.6986	0.119^{*}	0.50
H4B2	0.2188	0.4249	0.8039	0.119^{*}	0.50
C5B	$0.1951(16)$	$0.3360(13)$	$0.5860(11)$	$0.121(6)$	0.50
H5B1	0.0328	0.3707	0.5709	0.146^{*}	0.50
H5B2	0.2648	0.3707	0.4979	0.146^{*}	0.50
H2					

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	$0.0817(15)$	$0.0481(12)$	$0.0918(16)$	0.000	$0.0170(12)$	0.000
S1A	$0.094(2)$	$0.0635(17)$	$0.0790(14)$	0.000	$-0.010(3)$	0.000
N1A	$0.079(6)$	$0.063(4)$	$0.136(6)$	$0.015(2)$	$-0.001(4)$	$-0.013(3)$
C3A	$0.141(8)$	$0.044(3)$	$0.118(7)$	$-0.013(3)$	$0.008(5)$	$0.009(4)$
C4A	$0.096(3)$	$0.074(3)$	$0.119(4)$	$0.003(3)$	$0.000(3)$	$-0.018(3)$
C5A	$0.112(7)$	$0.091(8)$	$0.134(8)$	$-0.016(5)$	$-0.050(5)$	$-0.018(6)$
S1B	$0.105(2)$	$0.0474(14)$	$0.114(4)$	0.000	$0.0191(14)$	0.000
N1B	$0.077(5)$	$0.0334(19)$	$0.102(3)$	$-0.008(2)$	$0.002(3)$	$-0.002(2)$
C3B	$0.063(3)$	$0.052(3)$	$0.096(3)$	$0.006(2)$	$-0.003(2)$	$-0.014(3)$
C4B	$0.096(4)$	$0.070(3)$	$0.130(4)$	$0.022(3)$	$0.009(3)$	$0.010(3)$
C5B	$0.098(7)$	$0.122(11)$	$0.148(9)$	$-0.009(5)$	$0.030(5)$	$-0.011(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 2-\mathrm{N} 1 \mathrm{~A}$	$1.348(6)$	$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}^{\mathrm{i}}$	$1.502(19)$
$\mathrm{C} 2-\mathrm{N} 1 \mathrm{~A}^{\mathrm{i}}$	$1.348(6)$	$\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 5 \mathrm{~A} 1$	0.9700
$\mathrm{C} 2-\mathrm{N} 1 \mathrm{~B}$	$1.357(5)$	$\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 5 \mathrm{~A} 2$	0.9700

$\mathrm{C} 2-\mathrm{N} 1 \mathrm{~B}^{\mathrm{i}}$	1.357 (5)
C2-S1B	1.675 (5)
C2-S1A	1.680 (4)
N1A-C3A	1.420 (8)
N1A-H1A	0.8600
C3A-C4A	1.473 (8)
C3A-C3A ${ }^{\text {i }}$	1.64 (3)
C3A-H3A	0.9800
C4A-C5A	1.494 (7)
C4A-H4A1	0.9700
C4A-H4A2	0.9700
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2-\mathrm{N} 1 \mathrm{~A}^{\mathrm{i}}$	114.2 (10)
N1A-C2-N1B	108.6 (3)
$\mathrm{N} 1 \mathrm{~A}^{\mathrm{i}}-\mathrm{C} 2-\mathrm{N} 1 \mathrm{~B}^{\mathrm{i}}$	108.6 (3)
$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2-\mathrm{N} 1 \mathrm{~B}^{\mathrm{i}}$	100.6 (9)
N1A-C2-S1B	121.3 (5)
N1A ${ }^{\text {i }}$ - $\mathrm{C} 2-\mathrm{S} 1 \mathrm{~B}$	121.3 (6)
N1B-C2-S1B	129.6 (4)
N1B-C2-S1B	129.6 (4)
N1A-C2-S1A	122.6 (5)
N1A ${ }^{\text {i }}$ - 2 - - S1A	122.6 (5)
N1B-C2-S1A	128.7 (4)
N1B ${ }^{\text {i }}$ - 2 - -S 1 A	128.7 (4)
C2-N1A-C3A	108.2 (8)
C2-N1A-H1A	125.9
C3A-N1A-H1A	125.9
N1A-C3A-C4A	130.7 (11)
N1A-C3A-C3A ${ }^{\text {i }}$	102.7 (5)
C4A-C3A-C3A ${ }^{\text {i }}$	114.8 (6)
N1A-C3A-H3A	101.3
C4A-C3A-H3A	101.3
C3A ${ }^{\text {i }}$ - $\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	101.3
C3A-C4A-C5A	115.0 (7)
C3A-C4A-H4A1	108.5
C5A-C4A-H4A1	108.5
C3A-C4A-H4A2	108.5
C5A-C4A-H4A2	108.5
H4A1-C4A-H4A2	107.5
N1A ${ }^{\text {i }}$ - $2-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	-21 (2)
N1B-C2-N1A-C3A	-7.6 (10)
N1B ${ }^{\text {i }}$ - 2 - - N1A-C3A	47 (3)
S1B-C2-N1A-C3A	179.0 (10)
$\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 2-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	168.3 (11)
C2-N1A-C3A-C4A	151.0 (13)

N1B-C3B	1.426 (7)
N1B-H1B	0.8600
C3B-C3B ${ }^{\text {i }}$	1.30 (2)
C3B-C4B	1.483 (7)
C3B-H3B	0.9800
C4B-C5B	1.504 (7)
C4B-H4B1	0.9700
C4B-H4B2	0.9700
C5B-C5B ${ }^{\text {i }}$	1.47 (2)
C5B-H5B1	0.9700
C5B-H5B2	0.9700
C4A-C5A-C5A ${ }^{\text {i }}$	117.3 (4)
C4A-C5A-H5A1	108.0
C5A ${ }^{\text {i }}$ C5A-H5A1	108.0
C4A-C5A-H5A2	108.0
C5A ${ }^{\text {i }}$ - $55 \mathrm{~A}-\mathrm{H} 5 \mathrm{~A} 2$	108.0
H5A1-C5A-H5A2	107.2
C2-N1B-C3B	111.9 (5)
C2-N1B-H1B	124.0
C3B-N1B-H1B	124.0
$\mathrm{C} 3 \mathrm{~B}^{\mathrm{i}}-\mathrm{C} 3 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	106.0 (4)
$\mathrm{C} 3 \mathrm{~B}^{\mathrm{i}}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	122.1 (5)
$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	122.6 (11)
C3B ${ }^{\text {i }}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	100.1
N1B-C3B-H3B	100.1
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	100.1
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	107.4 (7)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 1$	110.2
C5B-C4B-H4B1	110.2
C3B-C4B-H4B2	110.2
C5B-C4B-H4B2	110.2
$\mathrm{H} 4 \mathrm{~B} 1-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 2$	108.5
C5B ${ }^{\text {i }}$ - $\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	117.9 (5)
C5B ${ }^{\text {i }}$ - $\mathrm{C} 5 \mathrm{~B}-\mathrm{H} 5 \mathrm{~B} 1$	107.8
C4B-C5B-H5B1	107.8
$\mathrm{C} 5 \mathrm{~B}^{\mathrm{i}}-\mathrm{C} 5 \mathrm{~B}-\mathrm{H} 5 \mathrm{~B} 2$	107.8
C4B-C5B-H5B2	107.8
H5B1-C5B-H5B2	107.2
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	-6.9 (9)
N1A ${ }^{\text {i }}$ - $\mathrm{C} 2-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	110 (5)
N1B ${ }^{\text {i }}-\mathrm{C} 2-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	-18 (2)
S1B-C2-N1B-C3B	165.7 (10)
S1A-C2-N1B-C3B	177.5 (9)
$\mathrm{C} 2-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}^{\mathrm{i}}$	11.8 (14)

sup-4

supplementary materials

$\mathrm{C} 2-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}^{\mathrm{i}}$	$11.4(13)$	$\mathrm{C} 2-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$159.0(10)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$-175.2(15)$	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$-39.2(8)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$-39.3(9)$	$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$178.7(11)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}^{\mathrm{i}}$	$40.4(9)$	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}^{\mathrm{i}}$	$37.3(8)$

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1A—H1A $\cdots \mathrm{S}_{1} \mathrm{~A}^{\mathrm{ii}}$	0.86	2.53	$3.367(11)$	166
N1B—H1B $\cdots \mathrm{S} 1 \mathrm{~B}^{\text {iii }}$	0.86	2.76	$3.483(11)$	142
Symmetry codes: (ii) $-x+2, y-1 / 2,-z+2 ;($ (iii) $-x+2,-y+1,-z+2$.				

supplementary materials

Fig. 1

